

http://www.dno.co.kr http://www.dnetgroup.kr

Dnet History

Strive to Develop, produce and sell the products corresponding to customers

1987

Established Dongnam & Tech (individual enterprise): Designed and produced industrial robots.

2000

Established Dongnam

& Tech corporation

(developed and

produced LNB).

2002

Developed a microwave sensor module independently for the first time in Korea, selected as a company for a special case on military service Developed and sold microwave security detectors and lighting sensors for the first time in Korea

2003

Applied and registered

model on the microwave

(ETSI EN 300440) FCC

sensor, obtained CE

(Part 15) and ROHS

certificate.

a patent and utility

2006

Registered as a venture enterprise (company excellent in technology assessment)

2009

Built an affiliated research institute and the second factory (Dalseong 2nd industrial complex). Developed and applied for a patent on a

microwave micromodule.

2011

CUSTOMER SATISFACTION AND QUALITY-FIRST POLICY

Decided and registered a patent (subminiature antenna that combines a strip line and slottype feeding). Developed an outdoor security detector (K-Band).

Company leading the development and manufacturing of radar sensors

Dnet is a small and medium-sized enterprise specializing in producing microwave sensors (lighting sensors, security detectors, automatic door sensors, vehicle sensors, etc.). Dnet is a venture enterprise and export promising SME that recognizes the importance of the development of cutting-edge products using new technology and intensively invests in research and development to develop new products in the rapidly changing business environment,

As a result of exerting efforts to develop info-communications/electrical and electronics/radar sensor equipment based on this. Dnet Co., Ltd. is manufacturing products in full-scale and selling them abroad after completing developing microwave motion sensors (module/detector/activator) and establishing a production line for a massproduction system

Products made by Dnet Co., Ltd. are recognized for their excellence so the entire output is exported and the affiliated research institute actively developing new products.

Dnet Co., Ltd will strive to develop, produce and sell products satisfying the demands and expectations of consumers by developing new products and based on years of accumulated practical experience and human resources. All of our executives and employees have a mindset of challenging and creating for Dnet to become an info-communication equipment manufacturing company leading microwave in the 21st century.

2016

May 2016

Feb 2016 Applied for a patent (10-2016-0012897). Safety device informing user of means of transportation approaching from the rear (radar sensor). Mar 2016

Suitability certification on an wireless device for object

detecting sensors (24GHz frequency): MSIP-CRM-DNR-DND-306090

DND-30/DND-60/DND-90): IP66 certification Radar security detector (DND-Series Premium:

certification

DND-30/DND-60/DND-90): Low temperature/ high temperature test salt water test and temperature/humidity test certification

2013~2014

Registered as a material parts specialized company. Completed the development and massproduction of a military radar sensor (DND-30/60/90).

> 2015 Aug 2015

DND30/60.90 IP66 and KCC (broadcasting communication equipment certification) in progress

DND-30/60/90 patent application in progress

2017

Mar 2017 Developed subminiature K-Band Radar Module (DNS-324/DNS-334).

Nov 2017

Completed applying for a patent (in-vehicle remaining passenger detecting and warning device). Completed applying for a patent (getting-off passenger

protecting device by detecting approaching objects).

Dec 2017

Selected as an export promising SME.

2007 Changed the company name to Dnet Co., Ltd.

Dnet Co., Ltd.

Radar security detector (DND-Series: DND-30/ DND-60/DND-90): IP65

Radar security detector (DND-Series Premium:

Sep 2016

Registered a patent (10-1656251): Intrusion detection system (radar security detector grafting detection area dividing technology)

Nov 2016

Selected as a material parts specialized company (Ministry of Commerce, Industry and Energy). Received the new technology prize at 17th radio broadcasting: Prize from the Minister of Science, ICT and Future Planning)

2019~

DNC-300(S) KC conformity certification

May 2019

Registered as a small and medium-sized venture enterprise.

Jun 2019

Obtained the performance certification (Ministry of SMEs and Startups), DND-30/60/90

DNC-150T, DNC035S KC conformity certification

Jul 2010

Completed registering the U.S. patent (in-vehicle remaining passenger detecting and warning device)

2018~

Mar 2018 DNS-060 KC conformity certification

May 2018 Acknowledged for the

research exclusive department.

Sep 2019 Selected as a Pre-Star

company.

Dec 2018

DND-3106 KC conformity certification

벤처기업확인서

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

위 업체는 벤처기업육실에관한적별조치법 제25조

KIBD 기술보증기금 이사장

Venture enterprise

confirmation

연구개발전담부서 인정서

14.100 (Mar. 200)

· 이유한구인을 및 이유적할이원에 관한 법률. 1411일 및 같은 접 시험할 제22.5세1일에 여러 이렇지 친구적할방갑구시도 전쟁합니다.

근정에 의하여 변자기업일을 확인합니다.

KC conformity certificate (DND-3106)

KC conformity certificate (DND-2000)

KC conformity certificate (DNS-060)

KC conformity certificate (DNC-300, DNC-300S)

KC conformity certificate (DND-Q1000)

đ

يلو___

-

소재·부름전문기업확인서

#2.05 Servic-Section 5 # 4 (105864/245/2301/958) 10 2 0 (428)

8 722 "48-922372 84 424 22 42442. 0231912 5 22 2 4234 4324234 48 28 -73

Material parts specialized

company confirmation

.

특허중

 4
 4
 10-100680
 3.
 3355_mm.
 4 mm mmm m

 State cases
 5.5.5_mm.
 mm mm m
 4 mm mm m

 State cases
 5.5.5_mm.
 mm m m
 4 mm

444 ------ +444 (MRC-)------) 47844 847 428 4445442 198 3018

() <u>• • •</u> •

Patent No. 10-1056860

and 24 24

4444-mm (4)(4)(2000-0000) #7944(847-858-80-0

6

수출유발중소기업지정충

지명기관 : 2017. 12. 01 - 2018. 11. 30

3917 12 34

47-384822#47283+6848<mark>443</mark>3

Export promising SME

designation certificate

RII 발명은 '유치및 내 RII 유리는유의구에 유유되었을 운영합니다. Takis to certify duit, in accordance with the Faster Act, a patient for the insertion has to env reported at the Ramon Intelfactual Property Ofics,

Patent No. 10-1656251

Disc Indiana

특허증

101 10 -----

TATT NONE OF OF

월 4 월 ((P)이상 (아당이들속이트 RA 선산물론 : 이미요프레이프레이요프인드 우 : & 대우 일어의 유산프로인 R 내 프 라 : 바란론

4254744.784

KC conformity certificate (DNC-150T, DNC-035S)

KC conformity certificate (DND-30/60/90)

Declaration of conformity (DNS-010)

Declaration of conformity (DNS-200)

	방송통신기자제등의 복합민준서
Cont.	from of Brank patter and Communication Environment
10 48 49	state
14428	
181.85	IND INT
-1-1-11	
024A	1029 (201 (946 (946 (346) 197) (21 (21
62-144	8918-13-08
04	
is writed that here	going againment has been contributed under the Cleans 1, Article 18-2 of Radio
Faries Aut.	
	282440749
Do	wher General of National Radie Reviewsh Agoncy
	Contractor of the second

Broadcasting communications equipment conformity certificate

1	
	1994 1994 - 1995 1994 - 1995 - 1999 -
	 (응지원 - 100
	7 46-46 Tot 10 million and 20 10 10 10 10 10 4 66-48 Tot 10 million and 20 10 10 10 10 4 66-48 Tot 10 million and 20 10 10 10 10 4 7 70 10 10 10 10 10 10 10 10 4 7 70 10 10 10 10 10 10 10 10 10 10 10 10 10
	1.0000 - 2.5 000-1.227, p5 00-1.05.01 1.00000 012.010
	* > *** ******************************
	t the state of the
	(백)한국로선해양기자체연구원양 (1만)
×	1887 - 14 1910

Test report (DND-200)

Grant of equipment authorization

U.S. patent No. 16-040. 349

1 2 2 2 2 2	

- Radar Sensor Module Radar Sensor Module Radar Sensor Module Radar Lighting Sensor
- Radar Sensor Module

Product Introduction

(K-Band) (C-Band)

(X-Band)

(S-Band)

Detection Range

	Mo	odel No.	а	b	с	d	Angle	Remark
D N D	D	30L	30m	1~4m	3~5m	2.5m	***	Narrow
	D	30W	30m	25m	4m	2.5m	12°x80°	Wide
D N D	D	60L	60m	3~5m	5m	5m	***	Narrow
	D	60W	60m	25m	4m	5m	7°x25°	Wide
	D	90L	90m	3~5m	5m	7.5m	***	Narrow
	D	90W	90m	25m	4m	7.5m	7°x25°	Wide
D	D	120L	120m	3~5m	5m	10m	***	Narrow
	N D	120W	120m	25m	4m	10m	7°x25°	Wide

DND-Family (DND-30L/W, 60L/W, 90L/W)

Feature

- It controls with intelligent digital technology using a radar sensor module.
- It can divide into 12 zones (2, 5, 5, 7.5m*12) and can control and lift a desired zone (e.g. It can lift or put an alert on the entrance only).
- It is stable since the signal is standardized regardless of the range and there are almost no errors.
- \cdot It can be controlled remotely with RS–485 or Ethernet communication.
- Anti-masking function KC conformity certification • Pet immunity function and natural environment immunity
- (snow, rain, fog, storm, etc.) function
- · High-tension voltage failure clearance function
- Suitable for security alert of various geographical features (screen barriers, valleys, flatlands, etc.)

Specification

Specification	Туре	Specification	Туре
Voltage	15V ~ 30Vdc	Alarm Outputs	Relay(Normally closed)
Current consumption	80mA ~100mA	Dimensions (H*W*D)	197mmX125mmX55mm (Braket except)
Speed	0.3~8M/sec	Weight	0.6kg
Frequency	24.125GHz	Operating Temp	-40°C ~ +85°C
Detection Distance	Sense area table reference	Mounting Style	Wall,fence.etc
Detection Height	Sense area table reference	Mounting Height	1M
Detection Width	Sense area table reference	Interface	RS-485

3D Image

Setting Program

The detection range (width/ detection/angle) may vary according to the installation environment.

Detection Range

The detection range, detection width and detection height may vary depending on the installation place and installation environment.
It must be installed at a height of 80~90cm from the ground.

3D Image

8

IIII Dnet

DND-200D / 200A Microwave Barrier Rader Detector

Feature

Detection range: Max, 200m (based on ground level)/80~100m (based on fence)

- · Operating temperature: -40° C $\sim +65^{\circ}$ C
- ·Input power: -~30 Vdc.
- · Detecting an intruder walking, running or leaving
- Installed quickly and easily on pillars, fences and walls.
- $\cdot\,\text{No}$ need for maintenance,
- · High RFI/EMI immunity
- \cdot Can be controlled remotely with RS-485 communications
- Installation height: Install at a height of 80~90cm from the ground (when installing on a fence, install at a height of 20~30cm but within 2,5~3m from the ground).
- · KC conformity certification

Specification

Microwave Frequency	Weather Proofing
Scope (Length of Protection zone)	Max. 200m
Lobe Witdh	1.5m(Max)
Lobe Height	1.2m(Max)
Range of Power Supply Voltage	9 ~ 30 Vdc
Current Consumption	35mA
Relay Contacts Values	N.C 28 Vdc, Maximum current 0.1 A
Alarm Period	3 Sec (Max.)
Tamper Switch	N.C 28 Vdc Maximum current 0.1 A - open when cover is removed
Detection Speed (Target Velocity)	0.1 ~ 10 m/sec
Remote testing	Built-in self-test generator simulates actual intrusion signals
Flatness of Ground	Approx. 0.3 m
Maximum Height of Grass on the ground	0.3 m
Maximum Height of Snow on the ground	0.5 m
Alarm Output - Switching over of relay Contacts for the time	Minimum 3 Sec
Dimensions of Unit (trans./rec.) W/O braket	211x138x105mm
Weight (T,Rand Accessories)	1.2Kg
Operating Temperature Range	-40°C ~ +65°C
Interface	RS-485
Weather Proofing	 All openings with gasket and sealed Conformal coated circuit board

Note

- The detection range, detection width and detection height may vary depending on the installation place and installation environment.
- This sensor is a sensor for fences so the detection width and alarm output vary due to its characteristics.
- Therefore, the detection width is $1 \sim 1.5$ m but the alarm may not sound within this range. The alarm sounds when passing through the center of the receiving part and the sending part of the sensor (in other words, when entering about 50% of the detection width).

Detection Range

Detection Range

DND-50B,100B

IR & Radar Security Detector

Feature

· Dual sensor with almost no errors

· Used for the security of a wide area. · Installed on small and large factories, military bases, highway

safety and ports.

· Has high disturbance immunity to nature, artificial elements and general obstacles

C

· Has high disturbance immunity by using dual detection of microwave (radar) and infrared rays (IR) type.

Specification

Specification	Туре	Specification	Туре
Voltage	15V ~ 30Vdc	Alarm Outputs	Relay (Normally closed)
Current Consumption	0.05A	Dimensions (H*W*D)	211mm X138mm X105mm
Housing protection level	IP-55	Weight	3kg
Frequency	24.125GHz	Operating Temp	-40°C ~ +65°C
Detection	50m (DND-50B)	Mounting	Wall fance atc
Range	100m DND-100B)	Style	wan,rence.etc
Detection Width	0.2m	Interface	RS-485,USB and Bluetooth (upon request)

DND-300 / 300M Indoor,10.525Ghz

DND-Q1000

Indoor/Outdoor 24.125GHz

Feature

the Doppler principle · Using a microwave motion sensor module with a microstrip patch antenna · Installation considering a user's convenience (using a wall and ceiling bracket)

Specification

· Detection Method : Quad element PIR & microwave pulse Doppler Power Input: 8.2 to 16Vdc
 Current Draw Active: 25.5mA: Standby: 16,5mA

 Temperature · Compensation YES · Alarm Period 2 +/- 1 sec Alarm Output : N.O 28 Vdc 0.1 A with 10 Ohm series protection resistors • Tamper Switch: N.C 28 Vdc 0.1A with 10 Ohm series protection resistor - open when cover is removed ·Warm Up Period: 1 min

· LED Indicator: Yellow LED is blinking during warm up period and self testing Red LED: ON during alarm Green LED: Pir Channel Yellow LED: MW channel

Dimensions 115mm x 61mm x 37.5mm ·Weight: 120g · Option: Wall & Ceiling Mount Bracket

Detection Range

·DND-3000 detects the distance up to 15m by combining PIR and microwave detection patterns (when installing on the height of $1.0 \sim 1.2$ m from the ground).

·DND-3000 can control the housing (including two PIR and microwave devices) moving inside to the right and left and is used by adjusting the detection angle to the application range of 90° from 0° to 180°.

Reference

· DND-3000 is an outdoor security detector applying infrared rays and a radar (microwave) sensor. It is perfect for application in a poor outside environment.

· DND-3000 is designed for outdoor use so it can be used in a very poor environment and does not detect pets.

· With the combination of dual technology hardware and precise software technology, it can provide high reliability and cover various spaces. There are also almost no errors.

Its inside is composed of dual PIR and a radar (microwave) sensor. It has an elegant, strong plastic body.

. This sensor surely removes false alarms based on high reliability while detecting intruders in a protection zone along with a microwave Doppler sensor.

• The detection sensitivity and angle can be adjusted to 16 measurement levels using a digital rotary switch so an effective pattern is set every time according to the protection zone and environment

· DND-3000 is designed to protect a wide area. It can be easily installed on the wall for firm protection, It has a 'PET MASK' function so it removes the disturbances by birds or small animals effectively.

· Microwave detection based on · Microwave sensitivity adjustment and PIR sensitivity adjustment · Two-way temperature compensation · LED on/off jumper · Environmental immunity · Does not detect pets weighing

less than 25kg (DND-300M)

C

DND-3000 Double Quad PIR & Microwave Outdoor Detector

- · Applying Microwave K-Band using the Doppler principle
- · The detection range (angle) is 90°. It can be adjusted within 180°.
- · Powerful polycarbonate housing and automatic temperature compensation
- · A user can select sensitivity adjustment

C

- · Excellent RFI immunity
- Excellent sunlight and white light filtering
- KC conformity certification

Specification

Specification	Туре	Specification	Туре
Voltage	9.6~ 16Vdc	Detection Distance	12M
Current (MAX)	24mA (+/- 5%)	Tamper Switch	Two Switches
Current (Stand by)	21mA (+/- 5%)	Operating Temp	-35°C ~ +55°C
Microwave Power	13dBm EIRP	Led Indicator	Led is ON during ALARM
Frequency	24.000 ~ 24.250GHz	RF immunity	10V/m plus 80% AM from 80MHz to 2GHz
Communica- tion Mode	Ethernet	Mounting Style	Pole
Warm up Period	120 sec(+/- 5sec)	Mounting Height	0.8M ~1.5M
Alarm Period	2 sec(+/- 0.5sec)	Weight	2Kg
Alarm Output	Form C (NC,NO, COMMON)	Dimensions (H*L*W)	200 x 86 x 80 mm

Alpha-30 Alpha / Alpha W

Feature

· Smart radar security detector · Applying microwave K-Band (24,125GHz) dual signal

· Detection angle: 80°~90° or 130°~140°

· Frequency collision preventive function - Small animal, rain, snow, lightening and white light avoiding function (recognizing patterns)

· ID assigning function through RS-485 communication function · Sensitivity adjustment selection and time adjustment function · PC8 Ass'y without housing (option: powerful ABS housing function)

· Radar sensor for streetlights/security lights control · Can be used outdoors and indoors.

Detection Area (Antenna Radiation Pattern)

Detection Area (Installation Method)

Specification

· Detection Method : Radar(Microwave) Doppler · Microwave Frequency : 24.125GHz · Detection Range : Alpha Max. 25m · Detection Range : * Alpha: 80°(H) *12°(V) * Alpha W : 130°(H) * 12°(V) · Input Power : 12.0 ~ 30.0Vdc Alarm Output : Serial Data(RS-485) N.C or N.O(Relay Signal) Alarm Period : 2 +/- 1sec · Detection time : 50m sec typical \cdot Operating Temp. : - 40°~ + 60° · LED Indicator : Blue LED - ON during alarm ·Weight:200g · Option : Housing

C

Feature

Feature

· Ceiling Type

· Ceiling Type

Feature

Lighting Sensor · Small size and 220VAC(Input Power)

Feature

· Connection : Jack Type · Ceiling & Wall Type

12

· Radar Motion Lighting Sensor · Used a RF the Microwave Motion Sensor Modules. · Appling the Doppler radar principle. · Input Voltage : DC Only(12VDC ~ 24VDC). · Low cost & Low Power Consumption. · Connection : Jack Type

DNL-400(MR) Lighting sensor

· Microwave Motion Sensor Light Modules · Used a RF the Microwave Motion Sensor Light Modules. · Appling the Doppler radar principle. · Input Voltage : AC Only(220V ~ 240V)

· Low cost & Low Power Consumption.

DNL-400(XH)/DNL-400(CH)

· Microwave Motion Lighting Sensor -· Used a RF the Microwave Motion

· Connection of Module and Controller. · Appling the Doppler radar principle. · Low cost and Low Power Consumption.

Model NO.

Model NC).	Model Name	Remark	
	Ι	X-Band Microwave	1000	
	Ш	Lighting Sensor	TUGHZ	
DNL-400CH		C-Band Microwave Lighting Sensor	5GHz	
DNL-400SH		S-Band Microwave Lighting Sensor	2GHz	

DNL-400(L) Radar Lighting Sensor

· Used a RF the Microwave Motion Sensor Modules. · Appling the Doppler radar principle. · Input Voltage : DC Only(12VDC ~ 24VDC) · Low cost & Low Power Consumption.

DNC-Series DNC-300(1)/300(3)/300(S)

Feature

5m~12m

function

·K-Band Radar Sensor

small, thin, slim design

· Detection distance: Max

· Detection-range adjusting

 Close switch function detecting objects at a

·Speed (1~30km/h)

Motion detection

distance of 10cm or less

identifying function (1.5~5m)

· Micro radar sensor applying

 Direction (forward/backward) identifying function (1.5~5m)

• Open collector output and UART interface function

· Eco mode with less power consumption (reducing by

• Detecting stopped objects: Detecting the existence of

· Detecting targets: Detecting

. 90% max)

fixed objects

five target objects

Antenna Pattern

Specification

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Radar					
transmit frequency		24.050		24.250	GHz
output power (EIRP)				20	dBm
Sensor		1	1	1	1
max adjustable detection range	motion detection for an $RCS = 1m^2$			12	m
	switch functionality E.g. Detection of a hand			0.1	m
range for direction of movement recognition	E.g. Detection of a person	1.5		12	m
activation time switch			400		ms
velocity range		0.7		34	km/h
antenna pattern (10dB width)	compare plot on page 13				o
					٥
Power supply					
supply voltage		12		15	v
supply current	full operation	55	60	65	mA
	Environment				
operating temperature		-20		+60	°C
storage temperature		-40		+85	°C
Mechanical Outlines					
outline dimensions	height length width		16.0 34.0 45.5		
Weight					
			13.2		g

Detection Zone

16

17

Function Description

• The sensor can switch Pin #10 to the power consumption ECO mode with continuous operation through pull–down and Pin #1 to the stand–by mode through pull–down. In the ECO mode, the sensor works once per second and sound a dial tone while LED is flickering. For detection, the sensor maintains the activation status for 5 seconds.

5 seconds. • Minimum
• The close switch is activated by detecting within the less than 10cm distance. The next parameter can be revised through UART interface (the default value in bracket).

Time to active the output after sensing a motion (0.5sec)
Output activating time after detecting a motion (1sec)
The motion sensing output can be de-activated individually.
Time to activate the close switch after detecting an object (0.3sec)
Minimum time between activation of two close switches (0.6sec)

Interface & Outline

Connector	Description	In/Out	Comment
1	GND	IN	
2	VCC	IN	12~15V
3	Relay	OUT	Relay COM
4	Relay	OUT	Relay NO or NC
5	VCC	OUT	5.0V (TTL_ low 0V high 5.0V)
6	GND	OUT	5.0V (TTL_low 0V high 5.0V)

Technology

. K-Band distance measuring system with an intelligent μ C deciding device

. This system is based on the latest MMIC technology so it provides the best measurement stability for temperature and aging.

. The system can detect stopped objects at a distance from 1.1m (3.6ft) to 35m (115ft) according to an available bandwidth (varying depending on RCS of an object).

Parameter

. DNC-150T is composed of 24GHz Radarfrontend (RFE) equipped with a DSP board that can measure the distance and radial velocity of an object.

. The sensor provides three outputs that can be composed within the designated range.

. Communications are performed with RS232 interface for the PWM output signal or digital output (open drain). The sensor can be configured with GUI.

DNC-150T

Feature

- \cdot Motion-measuring system based radar working in the 24Ghz ISM band
- $\cdot\,\text{Measuring}$ the distance of a moving object
- \cdot Measuring the distance from accuracy 0.3m to 150m
- $\cdot \, \text{Configurable}$ detection range
- \cdot Speed detection: 0.8km/h \sim 250km/h
- $\cdot \, {\rm Strong}$ metal housing designed for outdoor use

PARAME-	CONDITIONS	SYM-	MIN	ТҮР	МАХ	UNITS
Radar		DOL				
transmit						
frequency		f	24.000		24.250	GHz
output						
power		Pout			20	dBm
(EIRP)						
Sensor						
detection		dr			150	m
distance		ui			130	
speed		Vr	0.8		250	Km/h
range		VI	0.0		250	KIII/11
standard		hori-				
detection		zontal		34		0
field						
		verti-		49		0
Dowor cupp	b.	Cal				
rower supp	iy					
voltage		VCC	10		30	V
voltage	@ 12V without					
supply	digital out	IC-		135	150	mA
current	current	C_12V				
	@ 24V without	10				
supply	digital out	C 24V		76	85	mA
current	current	C_24V				
Digital Outp	out Current					
OUT1	open drain	lOut			-400	mA
OUT2	open drain	lOut			-400	mA
OUT3	open drain	lOut			-400	mA
digital to-		lOut			-800	mA
tal current		···u·				
Environmer	nt					
operating		-				
tempera-		TOP	-25		+60	°C
ture						
storage		TCTC	25			°C
tempera-		ISIG	-25		+60	C
Mochanical	Outlines					
Mechanical	Gutimes	height		45		
outline di-		lenath		63		mm
mensions		width		60		
			I			L

Specification

Technology

•K–Band distance measuring system with an intelligent μ C deciding device. This system is based on the latest MMIC technology so it provides the best measurement stability for temperature and aging. The system can detect stopped objects at a distance from 1.1m (3.6ft) to 35m (115ft) according to an available bandwidth (varying depending on RCS of an object).

Parameter

 $\cdot\, \rm DNC-035S$ is composed of 24GHz MMC based RFP (Radar front end) equipped with the DSP board which can measure the distance to a fixed object.

- $\cdot\,$ It merely affects the measurement accuracy for temperature and aging due to the MMC technology used.
- \cdot The sensor provides three outputs that can be configured within the designated range,

The following test conditions apply to verify the accuracy of the DNC-035S.

DNC-035S

Feature

K-Band Microwave Sensor Module
 Distance measuring system based on radar working in the 24GHz ISM band

• Measuring the distance of a fixed object

Measurement distance from 1.1m to 35m with accuracy (the distance can be provided following request if requested.) • Detection-range configuring function

C

Strong metal housing designed for outdoor use

Specification

PARAMETER	CONDI- TIONS	SYMBOL	MIN	ТҮР	мах	UNITS
Radar						
transmit frequency		f	24.000		24.250	GHz
occupied bandwidth	EU-version	⁼EU			250	MHz
	US/UK/ France - version	⁼US			100	MHz
output power (EIRP)	@ 25°C	°out			20	dBm
Sensor						
detection distance	EU-version	⁴r_EU	1.1		35	m
	US/UK/F - version	⁴r_US	2.7		35	m
accuracy @ 250MHz band- width		^EU		±3		cm
accuracy @ 100MHz band- width		۸US		±7.5		cm
update rate				75		ms
resolution	@ 250MHz	۲EU			60	cm
	@ 100MHz	۲US			150	cm
standard de- tection field		horizontal		34		0
		vertical		49		0
Power supply						
supply voltage		۲CC	10		30	V
supply current	@ 12V without digital out current	'CC_12V		135	150	mA
supply current	@ 24V without digital out current	'CC_24V		76	85	mA
Digital Output (Current					
OUT1	open drain	'Out			-400	mA
OUT2	open drain	'Out			-400	mA
OUT3	open drain	'Out			-400	mA
digital total current		'Out			-800	mA
Environment						
operating temperature		тОР	-25		+60	°C
storage tem- perature		⁼STG	-25		+60	°C
Mechanical Out	lines					
outline dimen- sions		height / length / width	4	5/63/6	0	mm

DNS-010V

Receiver

- · Sensitivity (10dB S/N ratio) in 3Hz to 80Hz bandwidth:-85dBm
- · Noise in 3Hz to 80Hz bandwidth:10µV
- · Antenna Gain:8dBi · E Plane 3dB Beam width:40'.
- \cdot H Plane 3dB Beam width:80' (Module Characteristics)
- Power/Temp. Coefficient(over operating temp. range) :3dB
 Frequency/Temp. Coefficient(over operating temp. range) : 6.5MHz

X-Band Series DNS-010,010CX,020,030,040

- · X-Band Radar Sensor Module(Standard Type)
- \cdot Used a RF the Microwave Sensor.
- \cdot The up-to-date sense which uses Doppler principle.
- \cdot Low cost & Low Power Consumption.
- \cdot Small and Flat Profile & pin type.
- · Reliable Construction & High Sensitivity.

Receiver

- · Sensitivity (10dB S/N ratio) in 3Hz to 80Hz bandwidth:-85dBm
- · Noise in 3Hz to 80Hz bandwidth:10µV
- · Antenna Gain:8dBi
- · E Plane 3dB Beam width:40'.
- · H Plane 3dB Beam width:80' (Module Characteristics)
- · Power/Temp. Coefficient(over operating temp. range) :3dB
- · Frequency/Temp. Coefficient(over operating temp. range) : 6.5MHz
- Operating Temperature Range : -20'C to +55'C
- Storage Temperature Range : -30'C to +70'C
- · Detection Range : 15M ~ 20M(Max.)
- Weight : 6 grams. Size(mm,+/-0.2) : 40.0 * 47.0 * 8.3
- CE" approval mark (CE ETSI EN 300 440: RF part) and "FCC" approval mark (PARTS 15.245) and "ROHS" approval mark

Transmitter

- · Frequency : 10.525GHz.
- · Frequency Setting Accuracy:3MHz
- Power Output (Min.):10dBm EIRP
- Operating Voltage:+5V +/- 0.3V
- Operating Current (CW): 30mA~35mA typical Harmonic Emissions: -30dBm

Model No.	Frequency	Remark
DNS-010	10.525GHz	FCC, CE
DNS-010V	10.525GHz	FCC, CE
DNS-010CX	10.525GHz	FCC, CE
DNS-020	10.687GHz	FCC, CE
DNS-030	10.587GHz	FCC, CE
DNS-040	9.900GHz	FCC, CE

FC (E

Feature

- · X-Band Radar Sensor Module(Standard Type)
- · Used a RF the Microwave Sensor.
- · The up-to-date sense which uses Doppler principle.
- · Low cost & Low Power Consumption.
- · Small and Flat Profile & pin type.
- · Reliable Construction & High Sensitivity.

Transmitter

- · Frequency : 10.525GHz. · Frequency Setting Accuracy:3MHz
- Power Output (Min.):10dBm EIRP Operating Voltage:+3V +/- 0.3V
- Operating Current (CW): 30mA~35mA typical Harmonic Emissions: -30dBm
- Operating Temperature Range : -20'C to +55'C
- Storage Temperature Range : -30'C to +70'C
- · Detection Range : 15M ~ 20M(Max.)
- Weight : 6 grams. Size(mm,+/-0.2) : 40.0 * 47.0 * 8.3
- · CE" approval mark (CE ETSI EN 300 440: RF part) and "FCC" approval mark (PARTS 15.245) and "ROHS" approval mark

Rader Antenna Module

Receiver

· C-Band Microwave Sensor Module · Used a RF the Microwave Sensor. · Appling the Doppler radar principle. · CW Radar, ISM Band · Small size. · Used Pin Antenna & Amplifier Inclusion. · Microwave technology. · Low cost & Low Power Consumption.

C-Band Series

DNS-200,DNS-200S,DNS-200M FC CE

Specification

· Electrical characteristics. Operating Voltage: 47. ~ 5 3VDC. · Operating Current : 10~20mA · Center Frequency : 5.800GHz (5.75GHz ~ 5.85GHz) Output Power : < 10mW · ABSOLUTE MAXIMUM RATINGS · DC Input Voltage 5VDC(4.7 ~ 5.3VDC) · Operating Temperature Range - 30 to +50'C Storage Temperature Range - 40 to +80'C • Relative Humidity 95% at 35'C · GENERAL CONTENTS · Size 34mm * 36mm * 8.3mm(Pin Ant. : exclusion) · Detection Range & Angle : (Wall) 15 ~ 20m (Max.) / 130'~ 150' (Ceiling) 10 ~ 15m Dia (Max.) / 360' · Radiated MW Energy 10~30 micro Watt(at least)

FCC CE

DNS-200L

Rader Antenna Module

Receiver

- · C-Band Microwave Sensor Module
- · Used a RF the Microwave Sensor. · Appling the Doppler radar principle.
- · CW Radar, ISM Band · Small size.
- · Used Pin Antenna & Amplifier Inclusion.
- · Microwave technology.
- · Low cost & Low Power Consumption.

Specification

· Electrical characteristics. · Operating Voltage : 4 7. ~ 5 3VDC . · Operating Current : 10~20mA · Center Frequency : 5.800GHz (5.75GHz ~ 5.85GHz) • Output Power : < 10mW • ABSOLUTE MAXIMUM RATINGS · DC Input Voltage 5VDC(4.7 ~ 5.3VDC) · Operating Temperature Range - 30 to +50'C Storage Temperature Range - 40 to +80'C · Relative Humidity 95% at 35'C · GENERAL CONTENTS · Size 82mm * 24mm * 8.5mm(Pin Ant. : exclusion) · Detection Range & Angle : (Wall) 15 ~ 20m (Max.) / 130'~ 150' (Ceiling) 10 ~ 15m Dia (Max.) / 360' · Radiated MW Energy 10~30 micro Watt(at least)

Rader Antenna Module

Specification

· Electrical characteristics • Operating Voltage : 4.5 ~ 5.3VDC Operating Current : 5~10mA Center · Frequency 2.45GHz (2.30~2.80GHz) · Frequency Stability : 5MHz max. (-30'C to +55'C) · Output Power : + 5dBm E.I.R.P. type

Return Loss Sensitivity : - 90dBc type · Antenna Beam width(-3dB) : E-plane 45 deg. nom. : H-plane 70 deg. nom. Antenna Gain 4~5dbi · Pulse mode operation · Pluse Width

K-Band Series DNS-060

Feature

- · Doppler radar-based motion detector
- Available in different frequency ranges
- · Advanced PHEMT-oscillator with low current consumption
- Split transmit and receive path for maximum gain
- · Mono (single channel) operation for motion detection
- · Very small outline dimensions

DNS-060FM

Feature

- · Radar-based motion detector working in the 24GHz ISM Band.
- · FMCW capable ; therefore measurement of distance as well as recognition of
- stationary objects is possible slit transmit and receive path for maximum gain
- · Advanced VCO-oscillator with low current consumption · Split transmit and receive path for maximum gain.
- · Dual channel operation for direction of motion identification

DNS-070DL

Feature

- · Doppler radar-based motion detector
- · Available in different frequency ranges
- · Advanced PHEMT-oscillator with low current consumption
- Split transmit and receive path for maximum gain
- · Dual channel(I/Q) operation ·Very small outline dimensions

DNS-080

Feature

- · 24 GHz short range transceiver
- Beam aperture 80°/12° 250MHz wide sweep FM input
- · Optional IF amplifier (DNS-080:V2)
- · Narrow wide asymmetrical field pattern
- · High sensitive LNA receiver · I/Q IF outputs
- · Compact size: 66mm x 25mm x 6mm

S-Band Series DNS-100

Feature

- · Used a RF the Microwave Sensor Module.
- · Appling the Doppler radar principle.
- · ISM Band
- · Small size(28mm * 20mm).
- · Microwave technology.
- · Low cost & Low Power Consumption.
- · Separate Pluse Control Input
- · Absolute Maximum Ratings
- · DC Input Voltage : 5.3Vdc
- · Operating Current : 10mA
- · Operating Temperature Range : 30 to + 50'C
- · Storage Temperature Range : 40 to + 80'C
- · Relative Humidity 95% at 35'C
- · Vibration G=10
- · Shock G=20
- · GENERAL CONTENTS
- · Size 28mm * 20mm
- · Detection Range 8m(standard)
- · Radiated MW Energy 30 micro Watt(at least)

- Section - Contraction - Cont		
Dnet	Dnet	Dnet

K-Band Series DNS-300(1),300(3)/300F(1),300F(3)

Feature

- · VCO Transceiver working in the 24GHz ISM Band
- · Detection of direction and velocity as well as distance of moving and
- stationary objects
- · Integrated Prescaler for easy frequency control
- · Integrated Low Noise Amplifier
- · Mounting by standard SMT-Process (delivery on Tape & Reel)
- Extended temperature range from -40°C up to +85°C
- · Very small outline dimensions
- · Available with different antenna patterns by same interface

Specification

PARAMETER		SYMBOL	MIN	ТҮР	MAX	UNITS
Radar						
VCO frequency range		fVCO	24.050		24.250	GHz
Tuning voltage	to cover VCO frequency range	^v tune	0.7		2.5	V
VCO tuning sensitivity	within VCO frequency range	^к VCO		720	2000	MHz/V
output power (EIRP)		Pout			20	dBm
IF output DC-Offset		[⊮] 1/2_DC-offset	1.4	1.8	2.2	V
IF-Bandwidth (-3dB)		В	0		1M	Hz
signal level (RCS = 0.5m ² @ 5m)		[⊮] 1/2	120		360	μVrms
noise level	100Hz1kHz	N1/2			20	μVrms
Power supply						
supply voltage		۷CC	3.2	3.3	3.4	v
supply current		'CC		47	57	mA
Frequency Divider						
Prescaler division ratio	^V CC_PTAT = 0 V,	DIV		16		
	^V CC_PTAT = 3.3 V	DIV		8192		
Prescaler supply voltage		VCC_DIV	3.2	3.3	3.4	V
Prescaler supply current		'CC_DIV		19		mA
Environment			<u>.</u>			
operating temperature		тОР	-40		+85	°C
storage temperature		™STG	-40		+85	°C
Mechanical Outlines						
outline dimensions		Height length width		3.1 21.4 15.0		mm

GUI Setting Program Display

Distance setting function		
Target filtering setting		
Overall average Medium speed		
Minimum speed Maximum speed		
Relay No/NC setting		
(default RS-232)		
*Option: RS-485		

Reference

· This product is developed to proactively prevent the speeding of vehicles and motorcycles driving on the road and prevent traffic accidents by photographing speeding vehicles when measuring speeding, storing those pictures and notifying the drivers.

- \cdot This product especially enables a driver to judge whether or not his/her own vehicle is being photographed due to speeding by himself/herself (Red LED when photographing).
- $\cdot\,\mbox{This}$ product is easy to install and displays the speed and distance of a vehicle by measuring those at the same time. It is a device with a totally difference concept from previously installed roof sensors.

DDS-1500 K-Band Microwave Radar Sensor

Feature

- · Measuring the distance of a moving object
- · Configurable within the distance measuring range of 0.3m~150m and vehicle photographing distance configuration function
- · Speed detection: 0.8km/h \sim 250km/h
- · Speeding vehicle (speed) configuring function and camera shooting function
- · Direction (forward/backward)

identifiable and forward/ backward direction selectible

- ·RS-232 communication interface
- · Applicable facilities: In large factories, apartment complexes, general roads, etc
- Shooting speeding vehicles can be used for the purpose of warning and controlling access

PARAMETER	CONDITIONS	SYMBOL	MIN	ТҮР	MAX	UNITS
Radar						
transmit frequency		f	24.000		24.250	GHz
output power (EIRP)		Pout			20	dBm
Sensor						
detection distance		dr			150	m
speed range		vr	0.8		250	Km/ h
standard detection field		horizontal		34		o
		vertical		49		0
Environment						
operating temperature		TOP	-25		+60	°C
storage temperature		TSTG	-25		+60	°C

Specification

* Measuring the distance of a vehicle in real time

- * Measuring the speed of a vehicle in real time
- * Easy to install
- * Convenient to move an installed position
- * Traffic flow investigating function including setting the minimum/ maximum speed of the slowest vehicle and setting the forward/ backward direction by extracting the fastest vehicle, median speed and the foremost vehicle among several vehicles entering at the same time (see the setting screen on GUI screen).

Examples of application of traffic interlocking system

Measuring the speed of a vehicle
Measuring the speed and distance of a vehicle at the same time

Photographing and saving the picture of a desired street when speeding [displaying the date, day, time and speed].

Camera photography(daytime)

Camera photography(nighttime)

Reference

• This product is a system preventing collision of cranes which is designed to prevent accidents in advance by preventing collisions of cranes installed on industrial sites.

DNC-100C

Feature

lt can:

- Measure the distance of a moving object (crane, structure).
- Configure within the distance measurement range of 0,3m~100m.
- Detect speed: 0.1km/ h~80km/h
- $\cdot\,\text{Confirm}$ the direction (forward/

backward), and it can select the forward/backward direction.

- · RS-232 communication interface
- Applicable facilities: Can sound a zone alarm by distance stage including in large factories, dockyards, and apartment construction sites

Specification

PARAMETER	CONDITIONS	SYMBOL	MIN	түр	MAX	UNITS
Radar						
transmit frequency		f	24.000		24.250	GHz
output pow- er (EIRP)		Pout			20	dBm
Sensor						
detection distance		dr			100	m
speed range		vr	0.1		80	Km/h
standard detection field		hori- zontal		34		o
		vertical		49		o
Environment						
operating temperature		TOP	-25		+60	°C
storage tem- perature		TSTG	-25		+60	°C

INDEX

А

С

D

26 — 27

C-Band Series	
DNS-200	
DNS-200L	
DNS-200M	
DNS-2005	

DDS-1500	
K-Band Microwave Radar Sensor	
DNC-035S	18
DNC-100C	25
DNC-150T	17
DNC-Series	
DNC-300(1) DNC-300(3) DNC-300(S)	
DND-50B,100B	
IR & Radar Security Detector	
DND-200D / 200A	
Microwave Barrier Rader Detector	
DND-300 / 300M	
Indoor,10.525Ghz	
DND-3000	
Double Quad PIR & Microwave Outdoor Detector	
DND-Family	
DND-30L/W	
DND-60L/W	
UND-90L/W	8

D

DND-Q1000 Indoor/Outdoor 24.125GHz..... DNL-400(L) Radar Lighting Sensor.... DNL-400(LED) Lighting sensor DNL-400(MR) Lighting sensor DNL-400(XH)/DNL-400(CH)

Κ

-

S

S-Band Series

DNS-100 ...

Х

X-Band Series	
DNS-010	
DNS-010CX	
DNS-010V	
DNS-020	
DNS-030	
DNS-040	

 .10
.13
.13
12
 .10
13

 		 		 		 	 	 			 					 		 		 		 			 	 	 	2	1	
 		 		 		 	 	 		-	 					 		 		 		 			 	 	 .,	2	1	
 		 		 		 	 	 		-	 					 		 		 		 			 	 	 .,	2	1	
 		 		 		 	 	 			 					 		 		 		 			 	 	 2	2	1	
 		 		 		 	 	 			 					 		 		 		 			 	 	 2	2	2	
 		 		 		 	 	 			 					 		 		 		 			 	 	 2	2	2	
 		 		 		 	 	 			 					 				 		 			 	 	 	2	2	
 		 		 		 	 	 			 					 		 		 		 			 	 	 	2	2	

																																																1	0
-	 • •	-	• •	-	• •	• •	•	• •	• •	-	• •	•	• •	-	• •	-	• •	-	•	• •	-	• •	-	• •	-	• •	• •	•	• •	•	•	• •	• •	•	• •	-	• •	• •	• •	•	• •	• •	 • •	-	 • •	• •	• •	I	7
 	 																							 																			 		 			1	9
 	 																							 																			 		 			1	9
 	 																							 																			 		 			1	9
 	 																							 																			 		 			1	9
 	 																							 																			 		 			1	9

42712 대구광역시 달서구 호산로 2길 23 (호산동) 23, Hosan-ro 2-gil, Dalseo-gu, Daegu, Korea TEL +82-53-584-3545, 3544 FAX +82-53-584-6423 E-Mail dneng@dno.co.kr / dnet3545@gmail.com Homepage http://www.dno.co.kr http://www.dnetgroup.kr